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ABSTRACT

Obtaining high resolution images of space objects from ground based telescopes involves using a com-
bination of sophisticated hardware and computational post processing techniques. An important, and
often highly effective, computational post processing tool is multi-frame blind deconvolution (MFBD) for
image restoration. One difficulty with using MFBD algorithms is that the nonlinear inverse problem they
are designed to solve may have many local minima. Standard optimization methods that use the gradient
to search for a minimum may get trapped in a local minimum, resulting in a less than optimal restored
image. Moreover, in some cases the global minimum may not correspond to the best reconstructed im-
age compared to a different local minimum. In this paper we consider a flexible optimization approach
that can easily incorporate various filtering schemes and prior information, resulting in a scheme that is
computationally more tractable. Practical implementation details are discussed.

1. INTRODUCTION

Image restoration is the process of reconstructing an approximation of an image from blurred and noisy
measurements. The image formation process is typically modeled as a convolution equation,

g(x, y) = p(x, y)⊗ f(x, y) + η(x, y) ,

where f(x, y) is a function representing the true image, which is convolved with a point spread function
(PSF), p(x, y). Some noise, η(x, y), is then added to obtain the observed image, g(x, y). Since the
convolution equation assumes the blur is spatially invariant, it cannot be used to model more difficult
problems, such as when the blur is spatially variant. In addition, it does not indicate that it is often
the case that the PSF can be represented in terms of only a few parameters.∗ We therefore consider the
general discrete image formation model:

g = H(p true) f true + η (1)

where g is a vector representing the observed, blurred and noisy image, and f true is a vector representing
the unknown true image we wish to reconstruct. H(p true) is an ill-conditioned matrix defined by a vector
of parameters, p true. H may be sparse and/or structured. For example, if the blur is spatially invariant
and periodic boundary conditions are imposed, then H has a circulant matrix structure. p true is a vector
of parameters defining the (true) blurring operation. For example, in the case of spatially invariant

∗It should be noted that it may also be possible to put f(x, y) in a parametric form. However, this is more
difficult and restrictive; it requires having a significant amount of information about the object being imaged.
This is an interesting problem, which may be considered in the class of sparse sensing.



blurs, p true could simply be the pixel (image space) values of the PSF. Or p true could be a small set of
parameters that define the PSF, such as with a Zernike-based representation [29]. In general we assume
that the number of parameters defining p true is significantly smaller than the number of pixels in the
observed image. η is a vector that represents unknown additive noise in the measured data. Generally η
is a combination of background and readout noise, where the background noise is modeled as a Poisson
random process with fixed Poisson parameter β, and the readout noise is modeled as a Gaussian random
process with mean 0 and fixed variance σ2.

The aim of computational postprocessing is to reconstruct an approximation, f , of the “true” image
f true. The term deconvolution is typically used when p true (i.e., the true blurring operator) is known,
whereas blind deconvolution implies that p true is not known. In either case, the computational problem
involves solving an optimization problem,

Deconvolution Blind Deconvolution
min

f
φ(f) min

f ,p
φ(f ,p)

where φ must be specified, usually incorporating regularization and possibly including additional con-
straints, such as nonnegativity.

For example, in the case of deconvolution with known blurring operator, we might use a least squares
fit to data term with Tikhonov regularization,

φ(f) = ‖g −Hf‖2
2 + λ2‖Lf‖2

2 .

With an a priori chosen regularization operator, L, and a prespecified regularization parameter, λ, this
is a simple linear least squares problem. More difficult is determining what regularization operator and
parameter is “optimal” for a given set of data. Poorly chosen L and λ will result in an optimization
problem whose global minimum is far from the actual true solution. Moreover, even with good choices
for L and λ, additional constraints may be needed to ensure a good reconstruction is computed. Finally,
we remark that the specific form of φ may depend on statistical properties of the noise and data, such as
when a maximum likelihood approach is used, or it may depend on the regularization approach, such as
in the case of total variation [1, 2, 4, 6, 8, 13, 14, 16, 24, 30, 32, 33, 34, 39, 43]. Thus, even the “simple”
problem of deconvolution with known blurring operator is nontrivial.

Blind deconvolution is much more challenging. If we have a good estimate of the blurring operator,
then it may be appropriate to use a regularized total least squares model [38]. However, these tech-
niques are not applicable for general blind deconvolution problems, and it is necessary to consider other
optimization approaches. For example, we might consider (a now nonlinear) least squares data fit with
Tikhonov regularization,

φ(f ,p) = ‖g −H(p)f‖2
2 + λ2

f‖Lf f‖2
2 + λ2

p‖Lpp‖2
2 .

Even if very good regularization operators and parameters are known, the problem of minimizing φ over f
and p is extremely underdetermined; there are infinitely many solutions. The nonuniqueness difficulty of
blind deconvolution problems have been well documented; see, for example, [9, 12, 15, 17, 18, 19, 20, 21,
23, 27, 29, 28, 37]. To overcome this difficulty, it is necessary to include additional constraints. Although
nonnegativity is a strong constraint, it is typically not enough to ensure a good reconstruction, and so
additional constraints, such as support of the object and PSF, are often needed. Another approach that
can be very effective is to construct a specific φ for particular classes of blurs and objects [5].

Multi-frame blind deconvolution (MFBD) [25, 26, 27, 29, 31, 41, 42] reduces some of the nonuniqueness
problems by using multiple images of the same object, but with different blurring operators. Specifically,
one obtains a set of (for example, m) observed images,

g(i) = H(p(i)
true)f true + η(i) , i = 1, 2, . . . ,m, (2)



which can be put in our general discrete model (1) by setting

g =

 g(1)

...
g(m)

 , p true =


p(1)

true
...

p(m)
true

 , η =

 η(1)

...
η(m)

 .

Although the multiple frames reduces, to some extent, the nonuniqueness problem, it does not completely
eliminate it. In addition, the problem becomes more difficult in two respects. First, the nonlinearity
involving p true increases, thus increasing the risk of an optimization algorithm becoming trapped in local
minima. In addition, the computational complexity of processing the large, multiple data sets significantly
increases.

In this paper we describe optimization methods that can be used to solve the MFBD problem, and
consider a reduced parameter space formulation to help alleviate some of the difficulties associated with
the local minimum trap. The approach we use is general (e.g., can be used for spatially invariant as well as
spatially variant blurs), and flexible (e.g., various filtering approaches and constraints can be incorporated
into the algorithm). The paper is organized as follows. In Section 2 we describe a general objective
function that can be used for MFBD, and a variety of approaches to compute its minima. Section 3
illustrates the challenges to finding the local minimum that corresponds to the best reconstructed image.
Additional numerical results are given in Section 4, and concluding remarks are given in Section 5.

2. OPTIMIZATION METHODS
To develop an MFBD algorithm, we need first to define an objective function φ(f ,p), and then we need
to use an appropriate optimization scheme to find its minima. In this paper we consider the general
Tikhonov regularized least squares problem:

min
f ,p

1
2

{
‖H(p) f − g‖2

2 + λ2‖f‖2
2

}
= min

f ,p

1
2

∥∥∥∥[
H(p)
λI

]
f −

[
g
0

]∥∥∥∥2

2

. (3)

A variety of algorithms can be used to solve this problem. In this section we outline three approaches, and
and conclude that a variable projection Gauss-Newton method provides an extremely computationally
convenient framework for MFBD problems.

2.1. Fully Coupled Problem
To simplify notation, we rewrite the nonlinear least squares problem given in equation (3) as

min
z
φ(z) = min

z

1
2
‖ρ(z)‖2

2 , where ρ(z) = ρ(f ,p) =
[

H(p)
λI

]
f −

[
g
0

]
, (4)

and zT = [ fT pT ]. Nonlinear least squares problems are solved iteratively, with algorithms having the
general form:

General Iterative Algorithm

choose initial z0 =

[
f0
p0

]
for k = 0, 1, 2, . . .

• choose a direction, dk, in which the objective can be improved

• determine how far to step, αk, in the direction dk

• update the solution: zk+1 = zk + αkdk

• stop when a minimum of the objective is obtained
end



Typically the direction dk is chosen to approximate the Newton direction,

dk = −(φ̂ ′′(zk))−1φ′(zk) ,

where φ̂ ′′ is an approximation of φ′′, φ′ = JTφρ, and Jφ is the Jacobian matrix

Jφ =
[

ρf ρp
]

=
[
∂ρ(f ,p)
∂f

∂ρ(f ,p)
∂p

]
.

In the case of the Gauss-Newton method, which is often recommended for nonlinear least squares prob-
lems, φ̂ ′′ = JTφJφ.

This general Gauss-Newton approach can work well, but constructing and solving the linear systems
required to update dk can be very expensive. Note that the dimension of the matrix Jφ corresponds
to the number of pixels in the image plus the number of parameters in p, and thus Jφ may be on the
order of 106 × 106. Thus, instead of using Gauss-Newton, it might be preferable to use a low storage
scheme such as the (nonlinear) conjugate gradient method. But there is a tradeoff – although the cost
per iteration is reduced, the number of iterations needed to attain a minimum can increase significantly.

There are other difficulties with using this fully coupled optimization approach. For example, it
requires specifying a priori the regularization parameter λ. Although there are well known approaches
for estimating a good regularization parameter for linear problems, the situation is much more difficult
for nonlinear problems. Moreover, the rate of convergence of the linear and nonlinear terms may be quite
different, and this general Gauss-Newton approach does not exploit this fact. Convergence difficulties
such as these have been documented in the case of blind deconvolution; see for example Biggs [3].

2.2. Decoupled Problem

Probably the simplest idea to solve the nonlinear least squares problem is to decouple it into two problems,
one involving fk and the other involving pk. Specifically, the approach would have the form:

Coordinate Descent Iterative Algorithm

choose initial p0

for k = 0, 1, 2, . . .

• choose λk and solve the linear problem:

fk = argmin
f
‖H(pk)f − g‖2

2 + λ2
k‖f‖2

2

• solve the nonlinear problem:

pk+1 = argmin
p

‖H(p)fk − g‖2
2 + λ2

k‖fk‖2
2

• stop when objectives are minimized
end

The advantage of this approach is that there are many well known approaches to solve the linear
problem, including methods to determine λ. The nonlinear problem involving p requires using another
iterative method, such as the Gauss-Newton method. However, there are significantly fewer parameters
than in the fully coupled approach discussed in the previous subsection. Thus, a Gauss-Newton method
to update pk+1 at each iteration is significantly more computationally tractable.



The disadvantage to this approach, which is known in the optimization literature as coordinate descent,
is that it is not clear what are the practical convergence properties of the method. As mentioned in the
previous subsection, the rate of convergence of the linear and nonlinear terms may be quite different
[3]. Moreover, if the method does converge, it will typically be very slow, especially for tightly coupled
variables [35].

2.3. Variable Projection Method
The variable projection method [10, 11, 22, 36, 40] exploits structure in the nonlinear least squares problem
(3). The approach exploits the fact that φ(f ,p) is linear in f , and that p contains relatively few parameters
compared to f . However, rather than explicitly separating variables f and p as in coordinate descent,
variable projection implicitly eliminates the linear parameters f , obtaining a reduced cost functional that
depends only on p. We then apply a Gauss-Newton method to the reduced cost functional. Specifically,
consider

ψ(p) ≡ φ(f(p),p)

where f(p) is a solution of

min
f
φ(f ,p) = min

f

∥∥∥∥[
H(p)
λI

]
f −

[
g
0

]∥∥∥∥2

2

. (5)

To use the Gauss-Newton algorithm to minimize the reduced cost functional ψ(p), we need to compute
ψ′(p). Note that because f solves (5), it follows that φf = 0, and thus

ψ′(p) =
df
dp

φf + φp = φp = ρTpρ ,

where the Jacobian of the reduced cost functional is given by Jψ = ρp =
∂(H(p)f)

∂p
. Thus, a Gauss-

Newton method applied to the reduced cost functional has the basic form:

Variable Projection Gauss-Newton Algorithm

choose initial p0

for k = 0, 1, 2, . . .

choose λk

fk = argmin
f

∥∥∥∥[
H(pk)

λkI

]
f −

[
g
0

]∥∥∥∥
2

rk = g −H(pk) fk

dk = arg min
d

‖Jψd− rk‖2

determine step length αk

pk+1 = pk + αkdk

end

Although computing Jψ is nontrivial, it is often much more tractable than constructing Jφ. In
addition, the problem of variable convergence rates for the two sets of parameters, f and p, has been
eliminated. Another big advantage of using the variable projection method for large scale inverse problems
is that we can use standard approaches to solve the regularized least squares problem at each iteration.
Good methods for estimating regularization parameters, such as generalized cross validation, have been
well studied, and good preconditioners have been developed for these types of linear inverse problems.



We remark that there are many options to solve the linear subsystem for fk, ranging from a simple
Wiener filter, to more sophisticated iterative solvers. Iterative solvers are essential for spatially variant
problems. But this general variable projection Gauss-Newton setup provides many options, depending
on the structure of the blurring operator and the PSF. Consider, for example, that in the computation of
fk we can replace λkI with λkL, where L provides additional (e.g., statistical or edge) information about
the data, and we can easily include prior knowledge about the object by replacing the 0 vector with a
(weighted) target object, λkf∗.

Finally, we mention that this approach significantly reduces the parameter search space to one that
involves only the nonlinear parameters p. Thus the challenge of finding the “correct” local minimum
should be more tractable.

3. LOCAL MINIMUM TRAP

A difficult challenge for MFBD algorithms is that the objective function typically has many local minima,
and, moreover, the global minimum may not correspond to an optimally reconstructed image. We
illustrate this behavior with a simple one-dimensional deconvolution problem involving a gamma ray
spectra and a Gaussian convolution kernel. Figure 1 shows objective functions for this problem, for one
and two frame data. Also shown in the plots are the true parameters p (denoted by the black dot) and
the solution computed by the variable projection Gauss-Newton method (magenta dot).

‖H(p)f − g‖2
2 ‖H(p)f − g‖2

2 + λ2‖f‖2
2 ‖H(p)f − g‖2

2 + λ2‖f − f∗‖2
2
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Figure 1. Three different objective functions for single frame blind deconvolution (top row) and two-frame blind
deconvolution (bottom row).

We see from this figure that inclusion of more information, including multiple frames, makes the
objective function more amenable to determining local optimal solutions. We also see that with just
the inclusion of some regularization, the variable projection Gauss-Newton method is very effective at
finding the correct local minimum. In the next section we provide further illustration of the effectiveness
of the optimization on more realistic image data. However, it is important to note that it is not always
the case that the global minimum provides the best reconstructed image. Indeed, it is often the case



that the global minimum occurs when H(p) = I (that is, the PSF is a delta function), and the resulting
“restored” image is simply the given blurred data.

4. NUMERICAL RESULTS

In order to illustrate the performance of the variable projection Gauss-Newton method for MFBD, we
observe some reconstructions of f true in the general discrete model described by (1). In this example we
assume the presence of a general Gaussian blur, whose PSF is 256× 256 with entries of the form

pij = exp
(
−(i− k)2s22 − (j − l)2s21 + 2(i− k)(j − l)s23

2s21s
2
2 − 2s43

)
and centered at (k, l) (location of point source). To generate simulated MFBD data, we construct three
PSFs of this form using three different values for s1, s2, and s3. Specifically,

True PSF parameters
Frame 1 Frame 2 Frame 3

s1 6.0516 5.4016 5.7347
s2 5.8419 4.3802 6.8369
s3 2.2319 2.1562 2.7385

Simulated blurred image data was generated convolving the PSFs constructed from these sets of param-
eters with a known true image, and then adding 1% white noise. The resulting simulated observed image
frames are shown in Figure 2.

Figure 2. Simulated MFBD data.

To apply the variable projection Gauss-Newton algorithm to this example we adapt the general
discrete model of (1) to include the information of the three frames. As described in Section 1, the model
for the algorithm then becomes that of equation (2) where m = 3. Note, in particular, that since we now
have three frames, the PSF parameter vector p will contain a total of nine entries.

Next, we need to find the Jacobian Jψ required for the variable projection Gauss-Newton method.
Jψ can be constructed analytically using the chain rule as :

Jψ =
∂

∂p
{H(P(p) ) f } =

∂

∂P
{H(P(p) ) f } · ∂

∂p
{P(p) } = H(F) · ∂

∂p
{P(p) }

where f = vec(F). It should be noted that, for this example, the use of a finite difference approach to
approximate Jρ can also work very well.

To choose λk and to solve the linear subproblem, we use the hybrid Tikhonov-conjugate gradient
method, HyBR; see [7] for further details. The step length αk is chosen using an Armijo rule [35]. One



should try to choose a good initial guess for p0, but in any case, we recommend over estimating the values
p true.

The results in Figure 3 show the convergence behavior in terms of relative (mean square) error
at each iteration of the variable projection Gauss-Newton algorithm for this example. The left plot
shows the convergence history of pk, and the right plot shows the convergence history of fk. Note that
the convergence behavior of both terms is very similar, and that the algorithm is converging to the
correct local minimum. Figure 4 shows the reconstructed image after the first variable projection Gauss-
Newton iteration (i.e., the initial reconstruction) and the reconstructed image after the last iteration
of the algorithm. Note that we have not tried to include any support constraints, prior knowledge, or
nonnegativity into the algorithm, but still the results are quite good. Better reconstructions could be
obtained if additional prior knowledge is included in the algorithm.
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Figure 3. Convergence results for MFBD. Left: Relative error of the estimated PSF parameters. Right: Relative
error of the reconstructed image

Figure 4. Left: Initial reconstructed image. Middle: True image. Right: Final reconstructed image

5. CONCLUDING REMARKS

In this paper we have provided a general optimization framework based on a variable projection Gauss-
Newton method for multi-frame blind deconvolution. The approach is flexible and computationally
tractable. In addition, we have illustrated that a hybrid Tikhonov-conjugate gradient method is effective
at simultaneously determining the amount of regularization and efficiently solving the linear subproblem
in the optimization scheme. Additional work is needed to further improve convergence behavior, such as
through preconditioning, as well as to efficiently incorporate bound constraints.
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