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ABSTRACT

We consider using data acquired from a micro-lens array through which multiple images of the full
field-of-view of an astronomical target are formed to attempt to reconstruct the 3-D wave front for the
observations. This opens the door for both a beacon-less wave front sensor and imaging of fields-of-
view substantially larger than the isoplanatic angle. The reconstruction problem can be modeled as a
large-scale linear inverse problem, but standard algorithms used for 3-D computed tomography (CT)
reconstruction cannot be applied because measured data are only taken from limited angular range,
leaving entire regions of the frequency space un-sampled. However, we show that there is substantial
structure in the mathematical model that can be exploited to obtain a robust algorithm that is amenable
to efficient implementations.

1. INTRODUCTION

In many imaging situations, such as when ground based telescopes are used to observe objects in space,
the observed image is degraded by blurring and noise. Although the blurring can be partially removed
through sophisticated (and expensive) imaging devices, such as adaptive optics telescopes, computational
postprocessing techniques are also often needed to further improve the resolution of the image. This



computational postprocessing, which is referred to as deblurring, restoration, or deconvolution [1, 5, 12,
10, 13, 21], requires solving an ill-posed inverse problem
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where f is the true object, g is the observed image, and e is additive noise. The kernel function k& models
the blurring operation, and is called the point spread function (PSF). Using a standard Fourier optics
model for atmospheric turbulence [18], the PSF can be expressed in terms of the wavefront phase error,
¢, of the light that reaches the telescope mirror,
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where ¢« = /—1, P is a characteristic function that models the shape of the telescope aperture (e.g., a
circle or annulus), and F~! is the 2-dimensional inverse Fourier transform. In perfect seeing conditions,
¢ =0, and in good seeing conditions (low turbulence), ¢ is a smooth function.

The effectiveness of image restoration algorithms depends strongly on how well one can approximate
the PSF, or, equivalently, how well one can estimate the phase, ¢. In some cases, a wavefront sensor
(WFS) can be used to measure gradients of the wavefront, from which the phase can be reconstructed.
A WFS is standard technology in adaptive optics systems, and many papers have been written about
efficiently reconstructing the wavefront from the gradient measurements; see, for example [3, 11]. The
phase reconstruction problem, from measured gradients, depends on the sensor geometry [6, 11] but it
essentially amounts to solving a discrete finite difference problem [8, 17, 4]. Probably the most commonly
used WFS is the Shack-Hartmann, found in optical systems across a very broad range of applications in
astronomy, medical imaging, space situational awareness, directed energy weapons, and secure commu-
nications [22, 9, 7]. But the Shack-Hartmann requires a well-defined and preferably unresolved source on
the far side of the turbulence to act as a beacon. In space imaging applications, this is either a natural
guide star or a laser guide star.

The wavefront phase gradient information measured by the WFS is an integration of the turbulence
effects along a line of sight through the 3-dimensional atmosphere. If imaging over a narrow field of
view (FOV), then it is generally not necessary to model the 3D turbulence profile; a 2D integrated phase
provides sufficient information to construct a spatially invariant PSF. However, when imaging over a wide
FOV, modeling the 3D atmospheric structure is important because a spatially invariant assumption on
the PSF may not be appropriate, especially in extreme turbulence situations.

Atmospheric tomography techniques have been developed to reconstruct a pseudo-3D representation
of atmospheric turbulence. We use the phrase pseudo-3D because it is not feasible to obtain a full
3D reconstruction of the atmosphere. Instead, the aim of atmospheric tomography is to reconstruct
information at a discrete set of dominant layers (slices) of atmospheric turbulence. In order to do this,
it is necessary to use multiple measurements, where, loosely speaking, each measurement is obtained
by viewing the turbulence layers from a different perspective. The typical, and perhaps most obvious,
approach to do this, is by collecting WFS measurements of guide stars distributed throughout the FOV,
and use standard limited angle tomography techniques to reconstruction the turbulent layers [2, 15, 16,
19, 20, 23, 14]. This is the approach taken in the Gemini multi-conjugate adaptive optics system [14],
which employs five sodium laser guide stars to correct a field of view of about an arcminute.

Because it may be impractical or undesirable to obtain multiple observations of guide stars, we take
an alternative approach. Specifically, we consider using WFS data acquired from a micro-lens array in
which the full FOV of an astronomical target is imaged through each micro-lens. Gradients of the local
wavefront phase aberration over each subaperture are used to reconstruct phase gradients at a discrete
set of turbulence layers. With known phase gradients, it is then straightforward to reconstruct phases at
each layer.



We show that the problem of reconstructing phase gradients at each layer, given phase gradients
in each subaperture, can be modeled as a large-scale linear inverse problem. The problem is severely
ill-conditioned, and can have distinct null space components. However, in certain situations, and with
appropriate regularization, we show that phases can be reconstructed at multiple layers.

The rest of this paper is organized as follows. In Section 2 we describe the problem setup, discuss
the properties of the mathematical model, and our approach to solve the resulting inverse problem. In
Section 3 we show the results of some experiments on simulated data to illustrate the effectiveness of our
approach. Some concluding remarks are given in Section 4.

2. PROBLEM SETUP

We consider a situation where the WFS divides the telescope pupil into a set of discrete lenses; see
Figure 1 for an illustration of 5 lenses (one should really think of this as a discrete grid of 5 x 5 lenses,
but the one-dimensional grid, or side view of a two-dimensional grid, shown in Figure 1, simplifies the
notation). Each subaperture captures light reflected off of objects in the FOV, but from slightly different
perspectives. In particular, as light travels through the atmosphere, it is affected by the dominant layers
of turbulence in a cone region defined by the diameter of the FOV and the diameter of the subaperture.
These cones are illustrated in Figure 1 with different colored lines; for example, red lines depict the cone
region corresponding to the first (far left) subaperture.

Equation (2) can be used to model local blurring in the images captured by each subaperture, but
because of the slightly different perspectives of the subapertures, each local blurring is defined by a
different phase. Specifically, the phase corresponding to the i-th subaperture is defined by integrating
through the atmospheric layers within the cone region from the i-th subaperture to the FOV. Note
that the WFS actually measures gradients, and not phases directly, but since differentiation is a linear
operation, we can assume the WFS measured gradients are an integration of gradients in the same cone
regions.

To describe a mathematical model that relates the measured phase gradients to phase gradients at the
various layers of turbulence, let ¢, (i) denote measured phase gradients in the z, or horizontal direction,
and ¢, (i) denote measured phase gradients in the y, or vertical direction, in the i-th subaperture. We
will assume an ng x ng square grid of subapertures, and define Ny = n2, and thus i = 1,2,..., N.

Suppose further that we partition the unknown phase gradients at the various layers of turbulence
into an n, x np, grid, and denote these partitioned regions of phase gradients as ¢, (j,¢) and ¢, (4, £), where
j=12,...,N, = ng, and £ =1,2,... Ny, with N, defining the number of layers of turbulence that we
want to reconstruct. Figure 2 illustrates our notation, which again shows a side view of a two-dimensional
grid with N, =4, N =3, and N, = 25.

Using this notation, a mathematical model relating the measured phase gradients to the unknown
phase gradients at each atmospheric layer can be given by
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where w(i, j, £) is a weight associated with the contribution of ¢(j, £) to ¢(i), and £,(i) and &, (i) represent
unknown noise and other measurement errors. The weight w(i, j, £) is the fraction of the region in which
¢(4,¢) is defined, which is contained within the i-th cone. For example, the situation depicted in Figure 2
shows that w(2,2,1) = 0. In general, it is expected that for a given subaperture, i, most of the weights
w(i, j,¢) will be zero.
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Figure 1: This figure illustrates a situation in which there are three dominant atmospheric layers of
turbulence (one at the ground, and two at higher altitudes), and 5 lenslets in the aperture. In reality,
there should be a grid of lenslets (e.g., 5 x 5), but to simplify the illustration, we show only a one-
dimensional side view of the aperture.
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Figure 2: This figure illustrates discretization of the phase gradients.
Note that the equations in (3) can be written in matrix-vector form,
¢, =W, +e, and cf)y =Wao, + ey, (4)

where W is an N, x N, N, matrix whose coefficients are given by w(i, 7, ¢). It is important to observe
that to avoid an explicitly under-determined system, we should require that the partitioning of the phase
gradients on each layer satisfy N, < Ny/Ny. Even with such a restriction, the matrix W can be highly
ill-conditioned, with a possibly nontrivial null space; this is illustrated in Section 3. Thus, solutions can
be very sensitive to noise and other data errors, and it is necessary to incorporate regularization in the
reconstruction methods. In this paper, we use standard Tikhonov regularization; that is, we solve the

least squares problems:

w b. w by
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We remark that although the two problems in equation (5) have the same coefficient matrix, the fact
that they have different data vectors means that the “optimal” level of regularization (defined by scalars
o, and o) might be different. However, currently we are using the same level of regularization for both

problems, and we leave for future work a more complete analysis of the two problems, as well as the
design of optimal regularization methods.
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3. NUMERICAL EXPERIMENTS

In this section we provide experimental results on simulated data to test the potential of our proposed
approach to atmospheric tomography. In each simulation, we assume that the FOV is at 330 km (the
altitude of, for example, the International Space Station), coverage area of 40 arcsecs, two dominant
layers of turbulence (N, = 2), and an aperture diameter of 3.6 m.

We use the forward models given in equation (4), where we first use e, = €, = 0, and then take these
terms to be 1% Gaussian white noise; that is, e, and e, are vectors with normally distributed random
entries, mean 0, standard deviation 1, and scaled to that

ng”Q _ ||€’lll|2 =0.01.
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Note that even without additional noise, the data contains downsampling approximation errors, which
can have a deleterious effect on the computed reconstructions.




We consider two possible configurations:
ng =32, np =16 and ng =064, n, =32.

The first configuration, where we assume the aperture is partitioned into 32 x 32 subapertures, reflects
current capabilities of a typical WFS.

Figure 3 shows the singular values of the reconstruction matrix, W, for both configurations. From
these plots we see that the matrix has a one-dimensional (numerical) null space, and except for the
one tiny singular value, the remaining singular values are relatively large. Therefore, we expect that a
reasonable reconstruction of the layers should be possible, provided we incorporate a modest amount of
regularization, and provided that the null space component of the solution does not contribute significant
information to the reconstructed phases.

Reconstructions for the configuration with ns = 32 and n,, = 16, using both noise free and noisy data,
are shown in Figure 4 . Reconstructions for the configuration with ny; = 64 and n,, = 32, using both noise
free and noisy data, are shown in Figure 5 . For both configurations we used regularization parameters
oz = o, = 1077 for the noise free data, and o, = a = 1072 for the noisy data.
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Figure 3: This figure shows the singular values for the matrix W'; the left plot shows singular values
for the case ny = 32 and n, = 16, and the right figures shows singular values for the case ny = 64 and
n, = 32.

These results illustrate that our model and computational approach to solve the atmospheric to-
mography problem, while not perfect at reconstructing atmospheric layers, still provides relatively good
reconstructions considering we use only one set of collected data of a scene of interest. In particular, we
do not do not collect multiple images, and we do not to use laser guide stars. It appears that the null
space component is important, and further work is needed to understand its significance, and how to
incorporate its information into the solution.

4. CONCLUDING REMARKS

Previously proposed techniques for atmospheric tomography typically use a distribution of guide stars to
obtain information from which to obtain a pseudo-3D reconstruction of atmospheric turbulence layers.
Because this may not always be practical, or feasible, we propose an alternative approach using a WFS
that is partitioned into a grid of subapertures. Our approach requires the collection of only one set of
data of a scene of interest, and does not require the use of any laser guide stars. We provided a math-
ematical and computational framework to use the phase gradients of the local blur in each subaperture
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Figure 4: Comparison of true phase with reconstructed phases for the case ny = 32 and n, = 16. The
top row is the phase the layer at 0 km and the bottom row is the layer at 5 km. The left column is the
true phase, the middle column is the reconstructed phase using noise free data, and the right column is

the reconstruction using noisy data.
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Figure 5: Comparison of true phase with reconstructed phases for the case ny = 64 and n, = 32. The
top row is the phase the layer at 0 km and the bottom row is the layer at 5 km. The left column is the
true phase, the middle column is the reconstructed phase using noise free data, and the right column is
the reconstruction using noisy data.



to reconstruct phase gradients at a discrete set of turbulence layers, which is then followed by a phase
reconstruction on each layer. The numerical experiments presented in this paper illustrate that our model
can be an effective approach to solve the atmospheric tomography problem. There are still many open
problems that we intend to address, including an analysis of the reconstruction matrix, W, and more
specifically, how to better regularize the null space components.
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