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Estimation of wavefront errors in three dimensions is
required to mitigate isoplanatic errors when using adaptive
optics or numerical restoration algorithms to recover
high-resolution images from blurred data taken through
atmospheric turbulence. Present techniques rely on multiple
beacons, either natural stars or laser guide stars, to probe
the atmospheric aberration along different lines of sight,
followed by tomographic projection of the measurements.
In this Letter, we show that a three-dimensional estimate
of the wavefront aberration can be recovered from measure-
ments by a single guide star in the case where the aberration is
stratified, provided that the telescope tracks across the sky
with nonuniform angular velocity. This is generally the case
for observations of artificial Earth-orbiting satellites, and
the newmethod is likely to find application in ground-based
telescopes used for space situational awareness. © 2016
Optical Society of America
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The three-dimensional nature of the atmosphere imposes
anisoplanatic effects on ground-based telescopes designed to
deliver high-resolution imaging. Turbulence broadly distrib-
uted along the line of sight introduces angular anisoplanatism,
a strong field dependence in the point-spread function.
Adaptive optics (AO) systems that rely on a laser guide star
(LGS) are additionally subject to focal anisoplanatism arising
because the volume of air sampled by the beacon at finite range
differs from that encountered by a more distant object. To
achieve unaberrated imagery in either case, the wavefront must
first be characterized over the volume of atmosphere between
the scene and the telescope.

In nighttime astronomy, this is achieved by wavefront sensor
(WFS) measurements of a constellation of guide beacons,
lasers, or natural stars that surround the target of interest. The
same approach is used in AO for solar astronomy, except
here a number of small regions of the solar surface that contain

significant high spatial frequency information at appreciable
contrast (e.g., sunspots, plage) replace the guide stars as beacons
[1,2]. Each region is projected onto a Shack–Hartmann WFS
that forms a set of images as observed through the sensor’s sub-
apertures. The images are each cross-correlated with a reference
image and the local wavefront phase gradients obtained from
the positions of the peak values.

As presently practiced, tomographic wavefront sensing
can be thought of as a two-step process. [3–5]. To begin, line
integrals of a quantity closely related to the atmospheric
aberration, such as its first spatial derivative, are measured by
the WFS along a number of discrete lines of sight. A tomo-
graphic algorithm then remaps the integrands onto horizontal
layers defined at discrete altitudes in the atmosphere. The
mapping is typically constrained to minimize the mean-square
difference between the measured quantities and the corre-
sponding estimates of the line integrals projected through
the atmospheric model [6].

Our approach departs somewhat from this paradigm. We
show in this Letter that tomographic wavefront information
can also be recovered from a single beacon provided that its
tracking rate is not constant. This will generally not be the case
for astronomical observations but frequently will be when the
objects are orbiting manmade satellites.

Instead of relying on multiple sight lines through the tur-
bulent atmosphere, we exploit the fact that the aberration is
strongly correlated on short time scales. We use the frozen flow
model (FFM), which treats the evolution of the aberration
as a series of independent static layers, each moving across the
telescope aperture with the prevailing wind at the altitude of the
layer. Because of its simplicity, the FFM is frequently used as
the basis for numerical studies of telescope imaging perfor-
mance, particularly in the modeling of AO systems. While
the FFM is observed not to hold in the real world over long
time scales, a number of studies [7–9] have shown that it is a
reasonable approximation for short but still interesting periods.
For example, from observations made at the 1.5 m telescope
of the Starfire Optical Range in New Mexico, at 0.74 μm
wavelength, Schöck and Spillar [9] found that the FFM is a
good approximation for a time scale τFFM of 20 ms or less. The
accuracy degraded over time such that after 100 ms only 50%
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of the temporal evolution of the wavefront could be described
by the FFM. Nevertheless, the period of validity of the model,
τFFM, is an order of magnitude longer than τ0, the expectation
value of the time required for the phase of a wavefront in a
circular telescope aperture to change by 1 rad rms [10].

In the very simple and artificial case of aberration character-
ized by a single frozen but wind-blown layer, it is easy to see
that taking WFS data at two different times along the same line
of sight can yield tomographic information in the same way as
two simultaneous measurements along different lines of sight.
The equivalent angular separation of the sight lines θs in the
former case is vl tWFS∕hl , where the quantities are, respectively,
the wind speed vl at the layer, the elapsed time tWFS between
frames of the WFS, and the range of the layer hl from the
telescope. In standard multibeacon tomography, θs is set by
the geometry of the optical system and is known. However, in
the single-beacon case, only tWFS is known. To recover the
same wavefront information, one must estimate both vl and hl .

Because we believe our method will be of most value in im-
aging artificial satellites, which often requires the use of a LGS,
our analysis in the remainder of the Letter explores the case of a
beacon at finite range. The result, however, is equally applicable
to guide stars at any range. The geometry and nomenclature
are established in Fig. 1.

We begin with an analysis of the WFS data to determine
the number of layers of significant atmospheric aberration
and their apparent velocity through the telescope’s light path.
The technique, described in detail by Hope et al. [11], relies on
the 3D spatiotemporal autocorrelation of the wavefront slopes
calculated from the signals of a Shack–Hartmann WFS. The
signature of a frozen layer is a line of high correlation radiating
from the origin. The angles made by the line with respect to the
zero-spatial-lag axis in the autocorrelation cube are determined

by the apparent wind vector of the layer. The coherence time
τFFM for the layer is estimated from the rate of decay of the
correlation along the line, and although we do not use this
information, the power in the line indicates the strength of
the aberration. Figure 2 shows a number of consecutive
time-lag slices from an autocorrelation cube calculated from
WFS data recorded at the AEOS 3.6 m telescope in Hawaii.
Peaks can be seen that correspond to three distinct layers above
the telescope, as well as other peaks that do not lie on lines
coming from the origin and reflect random correlations.

In the next step [11], we employ a nonlinear least-squares
technique in a partial separation of the wavefront gradients
on the layers we have identified. The estimates are constrained
to match the WFS data in both space and time. Phases at each
layer are then calculated from the gradients in the usual way.
(Although not germane to tomography, the spatial subsampling
afforded by the motion of each layer allows us to recover phase
estimates on spatial scales shorter than the Nyquist limit
imposed by the size of the WFS subapertures [12].)

We have built a small simulation to show this layer separa-
tion. Four atmospheric layers having different strengths, wind
vectors, and heights were modeled with frozen Kolmogorov
turbulence, as illustrated in Fig. 3. A sequence of 1000 phase
screens in the pupil of a telescope of 4 m diameter was made by
propagating the layers in time and light from a beacon through
the layers. The beacon was taken to be at 90 km range, the
approximate height of a sodium LGS. The WFS was modeled
as a Shack–Hartmann with a grid of 32 × 32 subapertures

Fig. 1. Wavefront sensing geometry analyzed in this Letter. A LGS
at range R illuminates a telescope of diameter D. A layer of atmos-
pheric aberration at height hl propagates with speed vl . The LGS beam
footprint at the layer has diameter d. The telescope tracks with
angular speed ω.

Fig. 2. Consecutive time-lag slices from the 3D autocorrelation of
Shack–Hartmann WFS data. The three white arrows indicate corre-
lation peaks corresponding to frozen aberration layers propagating
with different velocities. The shaded arrow indicates a random peak
not associated with a frozen layer.

Fig. 3. Single frame from the atmospheric simulation. Combined
aberration a is the sum of the four layers b through e.
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running at 1300 frames per second. The parameters of the
model atmosphere are listed in Table 1. The effective value
of the Fried coherence length r0 at 500 nm wavelength was
9.7 cm, and the coherence time τ0 was 2.0 ms. The mean
height of the aberration was 5400 m, giving an isoplanatic angle
of 1.1 arc sec.

The effect of the layer separation is shown in Fig. 4, which
compares the angular anisoplanatism as a function of field angle
for two cases. In the first, all the aberration is taken to be in the
telescope pupil, the conventional assumption for AO systems.
In the second, the upper layer was separately estimated and
taken to be at the correct range of 15 km. The lower three layers
were estimated as a single layer, placed in the pupil.

At this point, although the short-term frozen flow character
of the atmosphere has allowed us to determine the number of
significant layers of aberration and to distinguish the detailed
moment-by-moment contributions, we have still not estab-
lished the layer ranges and cannot make use of our knowledge
to mitigate either angular or focal anisoplanatism. The ranges
are not uniquely constrained by the data. We can break the
degeneracy, however, if observations can be made with the tele-
scope tracking at two different angular velocities.

Referring to Fig. 1, we start by writing the time tc for a point
on a single layer to cross the telescope beam as

tc � d∕jv⃗r j; (1)

where superscript arrows represent vector quantities. The beam
footprint diameter d � D�1 − hl∕R� and the resultant velocity
of the beam through the layer is given by

v⃗r � v⃗l − ω⃗hl : (2)

Hence,

tc �
D�1 − hl∕R�

�v2l � ω2h2l − 2vlωhl cos A�1∕2
; (3)

where A is the angle between the wind vector and the direction
of motion of the beam induced by the telescope tracking.

The value of tc for each layer is measured from the autocor-
relation of the WFS data. However, there are three unknown
quantities in Eq. (3): hl , vl , and A. A unique solution may
be found from measurements of tc with different values of ω⃗,
where the change in the angle of each layer’s motion through
the beam is also measured. That is, the tomographic problem
can be fully solved if the telescope tracks at a nonconstant rate,
provided that the layer ranges and velocities do not change sig-
nificantly during the observations. This will naturally be the case
for observations of most artificial satellites in nongeosynchro-
nous orbits since the angular velocity of the telescope must vary
to match the apparent track rate of the satellite across the sky.

The measurement geometry is illustrated in Fig. 5. Solving
the triangles in terms of the known and measured quantities is
quite straightforward and leads to a layer height

hl �
�
ϕ

D
� 1

R

�
−1

; (4)

where

ϕ � tc1tc2

�
ω2
1 � ω2

2 − 2ω1ω2 cos�B�
t2c1 � t2c2 − 2tc1tc2 cos�C�

�
1∕2

: (5)

Finding the actual layer velocities v⃗l , if needed, is equally
straightforward. It is worth noting that for R ≫ hl, the estimate
of hl is quite insensitive to changes in R, as may occur through
changes in the mean height of the sodium layer.

We have tested the estimation of layer heights using our
four-layer simulation. We assumed telescope tracking rates
ω⃗1 and ω⃗2 of 0.2° s−1 and 0.4° s−1, respectively, typical for
low Earth-orbit satellites, with a 10° difference in direction.
The apparent layer velocities and crossing times were deter-
mined by the autocorrelation algorithm from our simulated
Shack–Hartmann WFS data. The actual and measured values
of the crossing times and orientation shift (angle C in Fig. 5)
are given in Table 2. The recovered estimates of the layer
heights and velocities are shown in Table 3. These are to be
compared with the true values in Table 1.

Fig. 4. Angular anisoplanatism for conventional wavefront compen-
sation in the pupil plane only (dashed line) and for two altitude-
conjugated correcting layers (solid line) applied to the modeled
four-layer atmosphere.

Table 1. Parameters of the Model Atmosphere

Layer r0 (cm)a Height (m) Direction Speed (ms−1)

1 17 0 0° 2
2 20 500 0° 10
3 30 5000 −10° 25
4 30 15000 40° 50
aValue of the Fried parameter at 500 nm wavelength.

Table 2. Actual (Measured) Values of Apparent Layer
Wind Vectors in Simulation

Layer C (°) tc1 (ms) tc2 (ms)

1 0.0 (0.1) 2000 (1620) 2000 (1818)
2 −5.3 (−0.7) 482 (470) 604 (690)
3 −102.0 (−104.2) 451 (481) 265 (276)
4 54.2 (54.3) 95 (96) 50 (52)

Fig. 5. Vector geometry of the apparent velocities v⃗r of the guide
star footprint through a layer at height hl moving with velocity v⃗l for
two telescope track rates ω⃗1 and ω⃗2.
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In the case of a satellite tracked with a LGS, our goal is to
reduce the effects of focal anisoplanatism. This error term com-
prises three components: aberration at ranges beyond the bea-
con, unsensed aberration outside the cone defined by beacon
light but encountered by light from the more distant object,
and radial magnification of the sensed aberration as the beacon
cone expands to fill the pupil. Our method does not address the
first of these, which in any case is likely to be negligible, but the
remaining two may be mitigated by, respectively, exploiting
the FFM and our knowledge of the heights of significant layers.

Several methods have been suggested to take advantage of
temporal coherence [13–15], including frozen flow character-
istics, for improved wavefront control in AO systems. Here, the
FFM allows us essentially to know the atmospheric aberration
just outside the beacon light cone even when we cannot directly
see it. Of course, we can only estimate aberration actually swept
out by the beam footprint; some never will be, as illustrated in
Fig. 6. Furthermore, in a closed-loop AO system, we can only
know past history: the aberration that has already been sampled
by the beacon and is now downstream. In that case, we may
benefit from pointing the laser slightly away from the object
along a direction parallel to v⃗r for the dominant high-altitude
layer. In contrast, postprocessing applications such as deconvo-
lution from wavefront sensing can take advantage of both
future and past history, as we have shown with data taken
at the 3.6 m AEOS telescope [11].

By placing the separated layers at their correct ranges, the
beam compression ratio hl∕R can be taken into account in
deriving the best estimate of the aberration: the radial magni-
fication arising from the cone effect can be removed. The
quantitative reduction in anisoplanatic effects achievable in this
way will depend on the prevailing turbulence profile and the
extent to which multilayer frozen flow behavior can account
for the short-term evolution of the wavefront. For our model
atmosphere in Table 1, the value of the focal anisoplanatism
parameter d 0 is 1.9 m [16]. The error itself, given by
λ∕2π�D∕d 0�5∕6, is 148 nm rms for our 4 m telescope, in sat-
isfactory agreement with the value of 146 nm calculated di-
rectly from the 1000 composite phase screens of the
simulation. We have computed the reduction in the error from

our simulation by exploiting the layer separation illustrated in
Figure 4 and the layer characteristics calculated from tomogra-
phy in Table 3 to estimate the object phase in regions A, B, and
C of Fig. 6. We also explicitly estimate the unsensed portions of
the object wavefront (region D) via a set of 42 disk harmonic
modes [17] extending over the full object footprint but fitted
only to the estimated wavefront within the LGS footprint.
In this way, the focal anisoplanatism is reduced by a factor
of almost three to 54 nm rms.

This result is likely somewhat optimistic since the real
atmosphere is not characterized by perfect frozen flow behavior,
which we rely on to estimate the phase in regions B and C. For
realistic wind speeds and a LGS at 90 km, however, the crossing
time for these regions is of the order of milliseconds, an order of
magnitude shorter than τFFM.

Focus anisoplanatism typically dominates the wavefront
error budget for single-LGS AO systems. We expect that our
method, where applicable, will reduce the effect of the error
term to the point where that is no longer the case.

Even given the limitation that the FFM only allows phase
estimation to be extended in the direction of each layer’s wind
vector, mitigation of angular anisoplanatism will be possible as
well by placing the optical entrance pupil at some axial distance
from the telescope and slightly reducing its size [18]. In this
way, the footprint of light from objects at infinity can be ar-
ranged to stay within the sensed regions on all significant layers
of aberration over a field of view roughly an order of magnitude
larger than the isoplanatic angle.

Funding. Air Force Office of Scientific Research (AFOSR)
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Table 3. Results of the Layer Parameter Estimation

Layer Height (m) Direction (°) Speed (ms−1)

1 74 1.2 2.7
2 750 2.1 11.0
3 4850 −9.5 24.0
4 14700 40.4 49.4

Fig. 6. Beam footprint of the object light (outer circle) on a high-
altitude layer is only partially sampled by the LGS (shaded region A) at
any given moment. The regions labeled D are never sampled.
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